map2loop.interpolators.LinearNDInterpolator#
- class map2loop.interpolators.LinearNDInterpolator(points, values, fill_value=np.nan, rescale=False)#
Bases:
NDInterpolatorBase
Piecewise linear interpolator in N > 1 dimensions.
Added in version 0.9.
- __call__()#
- Parameters:
points (ndarray of floats, shape (npoints, ndims); or Delaunay) – 2-D array of data point coordinates, or a precomputed Delaunay triangulation.
values (ndarray of float or complex, shape (npoints, ...), optional) – N-D array of data values at points. The length of values along the first axis must be equal to the length of points. Unlike some interpolators, the interpolation axis cannot be changed.
fill_value (float, optional) – Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is
nan
.rescale (bool, optional) – Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude.
Notes
The interpolant is constructed by triangulating the input data with Qhull [1], and on each triangle performing linear barycentric interpolation.
Note
For data on a regular grid use interpn instead.
Examples
We can interpolate values on a 2D plane:
>>> from scipy.interpolate import LinearNDInterpolator >>> import numpy as np >>> import matplotlib.pyplot as plt >>> rng = np.random.default_rng() >>> x = rng.random(10) - 0.5 >>> y = rng.random(10) - 0.5 >>> z = np.hypot(x, y) >>> X = np.linspace(min(x), max(x)) >>> Y = np.linspace(min(y), max(y)) >>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation >>> interp = LinearNDInterpolator(list(zip(x, y)), z) >>> Z = interp(X, Y) >>> plt.pcolormesh(X, Y, Z, shading='auto') >>> plt.plot(x, y, "ok", label="input point") >>> plt.legend() >>> plt.colorbar() >>> plt.axis("equal") >>> plt.show()
See also
griddata
Interpolate unstructured D-D data.
NearestNDInterpolator
Nearest-neighbor interpolator in N dimensions.
CloughTocher2DInterpolator
Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D.
interpn
Interpolation on a regular grid or rectilinear grid.
RegularGridInterpolator
Interpolator on a regular or rectilinear grid in arbitrary dimensions (interpn wraps this class).
References
Check shape of points and values arrays, and reshape values to (npoints, nvalues). Ensure the points and values arrays are C-contiguous, and of correct type.
- __init__(points, values, fill_value=nan, rescale=False)#
Check shape of points and values arrays, and reshape values to (npoints, nvalues). Ensure the points and values arrays are C-contiguous, and of correct type.
Methods
__init__
(points, values[, fill_value, rescale])Check shape of points and values arrays, and reshape values to (npoints, nvalues).