: An Integrated and Interoperable platform enabling
3D stochastic geological modelling

Stochastic modelling of the Lower Burdekin Delta aquifer

Guillaume Pirot!, Dylan Irvine?, Cristina Solorzano-Rivas?® and Adrian Werners

-

1 Introduction and context

o

~

Insights about the sediment distribution of the LBD are
crucial for simulating flow dynamics, contaminant transport,
seawater intrusion, and surface water-groundwater
Interactions—all of which are vital for effective resource
management and environmental protection in the region
(Werner, 2010).

However, despite the conceptual model developed by Mc
Mahon (2004) and the existence of tens of thousands of
borehole lithological descriptions, the current numerical
model used to manage the resource Is not adequate for
groundwater flow and transport characterisation.
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Figure 1: left panel - conceptual model developed by Mc
Mahon (2004) ; right panel — analogue to current numerical
model (from Zadeh's MSc thesis)
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2 Method

o

a) Develop a stochastic modelling engine compliant
with the conceptual model of Mc Mahon (2004)

b) Extract information from legacy boreholes
c) Classify main properties and descriptors into main facies

d) Compute summary statistics for model calibration
* Facies proportions
* Thickness distribution per facies
« Calibration via global optimization (Mockus, 2002)
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3 Results

RN DESCR TOP BOTTOM P1 P2  Material Descriptor Fi ne'-g rained Intermediate
20021 TOPSOIL  0.00 396 SOIL MOMNE NOMNE sediments sediments
20921 CLAY 386  17.07 CLAY  NONE NONE stone] = Variations|
20921 CLAY SILTY 17.07 1737 CLAY NONE SILTY _{ ay/ey _{ +Sandjy ‘
20021 CLAY 1737  19.81 CLAY  NONE NONE Coarse-grained st | H ot
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20921 SAND COARSE AND STONES  19.81 2286 SAND COBBLES NONE sediments §
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12100520 CLAY GREY HARD 21.20 22 00 CLAY NOME MONE
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12100521 CLAY DARK BROWN FIRM  0.00 1.70 CLAY NONE FIRM “ ! ‘ “ e ‘
12100521 SAND LIGHT ORANGE BROWN FINETOMEDIUM COARSENS .. 1.70 3.00 SAND NONME MONE + Gravel + Clayey + sand
12100521 SAND LIGHT GREY FINETOMEDIUM GRAIN TO ABQUT 4 .. 3.00 6.80 SAND NONE MNONE +Sandy
12100521 ROCK COMPLETELY WEATHERED TO A OLIVE GREEN CLA..  6.80 7.40 BASEMENT CLAY WEATHERED, GRITTY

(c) Empirical cumulative distributions

(a) Sediment proportions

(a) Fine-grained sed. thickness ECDFs difference: 1.9%b) Coarse-grained sed. thickness ECDFs difference: 2.1%
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Figure 2: iInformation extraction
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(a) vertical section at y=7.836e+006

(b) vertical section at x=5.376e+05
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Figure 3: realisation from the calibrated stochastic algorithm
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Conclusions

Next steps

o AN /

The proposed stochastic
modelling engines satisfies:
 Mc Mahon’s conceptual model
* Global summary statistics

The code is available on GitHub
at https://github.com/gpirot/LBD-
facies-modeling

Publication submitted to Water
Resources Research (in review)
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Figure 4: local conditional
simulation using the Direct
Sampling algorithm
(Mariethoz et al., 2010)
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