FoldOptLib.input package¶
Submodules¶
FoldOptLib.input.input_data_checker module¶
- class FoldOptLib.input.input_data_checker.CheckInputData(folded_foliation_data, bounding_box, geological_knowledge=None)[source]¶
Bases:
object
A class used to check the input data for the optimisation.
…
- folded_foliation_data¶
The data related to a folded foliation or bedding
- Type:
pd.DataFrame
- bounding_box¶
The bounding box of the model area
- Type:
nd.array
- knowledge_constraints¶
The knowledge constraints data (default is None)
- Type:
dict
- check_foliation_data():
Checks if the foliation data is a pandas dataframe and has the correct columns.
- check_input_geological_knowledge():
Checks if the input geological knowledge constraints is a dictionary, and has the correct format.
- check_bounding_box():
Checks if the bounding box is a numpy array and has the correct format.
- check_input_data():
Checks all the input data for the optimisation.
- check_bounding_box()[source]¶
check if the bounding_box is an numpy array of the following format [[minX, minY, minZ], [maxX, maxY, maxZ]]
- check_foliation_data()[source]¶
Check the foliation data is a pandas dataframe and has the correct columns: X, Y, Z, feature_name and either strike, dip, or gx, gy, gz
- check_input_geological_knowledge()[source]¶
verify the format of the provided nested dictionary. TODO : add support for dict check for restricted mode of optimisation
- Raises:
ValueError – If the dictionary format is not as expected.
- Returns:
True if the format is correct, otherwise raises an error.
- Return type:
bool
FoldOptLib.input.input_data_processor module¶
- class FoldOptLib.input.input_data_processor.InputDataProcessor(data: DataFrame, bounding_box: ndarray, geological_knowledge: Dict | None = None)[source]¶
Bases:
CheckInputData