FoldOptLib.input package

Submodules

FoldOptLib.input.input_data_checker module

class FoldOptLib.input.input_data_checker.CheckInputData(folded_foliation_data, bounding_box, geological_knowledge=None)[source]

Bases: object

A class used to check the input data for the optimisation.

folded_foliation_data

The data related to a folded foliation or bedding

Type:

pd.DataFrame

bounding_box

The bounding box of the model area

Type:

nd.array

knowledge_constraints

The knowledge constraints data (default is None)

Type:

dict

check_foliation_data():

Checks if the foliation data is a pandas dataframe and has the correct columns.

check_input_geological_knowledge():

Checks if the input geological knowledge constraints is a dictionary, and has the correct format.

check_bounding_box():

Checks if the bounding box is a numpy array and has the correct format.

check_input_data():

Checks all the input data for the optimisation.

check_bounding_box()[source]

check if the bounding_box is an numpy array of the following format [[minX, minY, minZ], [maxX, maxY, maxZ]]

check_foliation_data()[source]

Check the foliation data is a pandas dataframe and has the correct columns: X, Y, Z, feature_name and either strike, dip, or gx, gy, gz

check_input_data()[source]

Check the input data for the optimisation

check_input_geological_knowledge()[source]

verify the format of the provided nested dictionary. TODO : add support for dict check for restricted mode of optimisation

Raises:

ValueError – If the dictionary format is not as expected.

Returns:

True if the format is correct, otherwise raises an error.

Return type:

bool

FoldOptLib.input.input_data_processor module

class FoldOptLib.input.input_data_processor.InputDataProcessor(data: DataFrame, bounding_box: ndarray, geological_knowledge: Dict | None = None)[source]

Bases: CheckInputData

process_data()[source]

Module contents